Molecular mechanisms: New pathway for fragile X treatment

Inhibiting the ERK1/2 pathway — which regulates the synthesis of other proteins — can rescue some of the effects of fragile X syndrome, according to a study published 17 November in the Journal of Neuroscience. The ERK pathway could provide a novel target for fragile X therapies.

By Jessica Wright
2 December 2010 | 2 min read

This article is more than five years old.

Neuroscience—and science in general—is constantly evolving, so older articles may contain information or theories that have been reevaluated since their original publication date.

Inhibiting the ERK1/2 pathway — which regulates the synthesis of other proteins — can rescue some of the effects of fragile X syndrome, according to a study published 17 November in the Journal of Neuroscience. The ERK pathway could provide a novel target for fragile X therapies.

Fragile X syndrome is caused by lack of the fragile X mental retardation protein, or FMRP, which controls the production of several proteins important at the synapse, the junction between neurons. Some therapies for fragile X syndrome target the mGluR receptor, which also regulates protein synthesis.

In the new study, researchers show that protein synthesis overall is higher in a slice of the hippocampus removed from the brains of fragile X mice. Inhibiting both the mGluR receptor and ERK1/2 — a pathway that mGluR activates — restores protein synthesis to normal levels, the researchers show. By contrast, inhibiting mTOR1 — another pathway also thought to be involved in fragile X syndrome — does not restore protein synthesis.

Injecting an inhibitor of the ERK pathway into the brains of fragile X mice also prevents seizures triggered by loud noise — a known characteristic of this mouse model.

The researchers show that the loss of FMRP does not increase mGluR and ERK1/2 signaling overall. Rather, it may make the cells more sensitive to proteins regulated by these pathways.

Sign up for the weekly Spectrum newsletter.

Stay current with the latest advancements in autism research.