NeuroAI
Recent articles
Advances and insights on the intersection between neuroscience and artificial intelligence
Solving intelligence requires new research and funding models
Our research ecosystem isn't built to deliver the breakthroughs needed to understand intelligence at scale. We need a dedicated research institution to take up the task.
Solving intelligence requires new research and funding models
Our research ecosystem isn't built to deliver the breakthroughs needed to understand intelligence at scale. We need a dedicated research institution to take up the task.
Grace Hwang and Joe Monaco discuss the future of NeuroAI
Hwang and Monaco organized a recent workshop to hear from leaders in the field about how best to integrate NeuroAI research into the BRAIN Initiative.
Grace Hwang and Joe Monaco discuss the future of NeuroAI
Hwang and Monaco organized a recent workshop to hear from leaders in the field about how best to integrate NeuroAI research into the BRAIN Initiative.
NeuroAI: A field born from the symbiosis between neuroscience, AI
As the history of this nascent discipline reveals, neuroscience has inspired advances in artificial intelligence, and AI has provided a testing ground for models in neuroscience, accelerating progress in both fields.
NeuroAI: A field born from the symbiosis between neuroscience, AI
As the history of this nascent discipline reveals, neuroscience has inspired advances in artificial intelligence, and AI has provided a testing ground for models in neuroscience, accelerating progress in both fields.
What the brain can teach artificial neural networks
The brain offers valuable lessons to artificial neural networks to boost their data and energy efficiency, flexibility and more.
What the brain can teach artificial neural networks
The brain offers valuable lessons to artificial neural networks to boost their data and energy efficiency, flexibility and more.
How Anthony Zador thinks neuroscience can help improve AI
Artificial intelligence is ubiquitous and powerful, but can neuroscience still help advance it? Zador describes the “virtuous circle” of neuroscience and AI that drives progress in both fields.
How Anthony Zador thinks neuroscience can help improve AI
Artificial intelligence is ubiquitous and powerful, but can neuroscience still help advance it? Zador describes the “virtuous circle” of neuroscience and AI that drives progress in both fields.
Cristina Savin and Tim Vogels discuss how AI has shaped their neuroscience research
Not all neuroscientists use artificial intelligence in the same way or for the same purpose. Neuroscience researchers from different fields discuss the impact AI has had on their research and how it influences productivity in their labs.
Cristina Savin and Tim Vogels discuss how AI has shaped their neuroscience research
Not all neuroscientists use artificial intelligence in the same way or for the same purpose. Neuroscience researchers from different fields discuss the impact AI has had on their research and how it influences productivity in their labs.
Kenneth Harris and Andreas Tolias explain how AI has informed their neuroscience research
Modern AI models have shaped how the pair thinks about our brains and minds, asks research questions and views scientific progress and productivity.
Kenneth Harris and Andreas Tolias explain how AI has informed their neuroscience research
Modern AI models have shaped how the pair thinks about our brains and minds, asks research questions and views scientific progress and productivity.
Kim Stachenfeld on the dance between neuroscience and artificial intelligence
As a researcher at both Google DeepMind and Columbia University, Stachenfeld offers cross-disciplinary insight into how to understand the brain.
Kim Stachenfeld on the dance between neuroscience and artificial intelligence
As a researcher at both Google DeepMind and Columbia University, Stachenfeld offers cross-disciplinary insight into how to understand the brain.
Explore more from The Transmitter
The non-model organism “renaissance” has arrived
Meet 10 neuroscientists bringing model diversity back with the funky animals they study.
The non-model organism “renaissance” has arrived
Meet 10 neuroscientists bringing model diversity back with the funky animals they study.
Assembloids illuminate circuit-level changes linked to autism, neurodevelopment
These complex combinations of organoids afford a closer look at how gene alterations affect certain brain networks.
Assembloids illuminate circuit-level changes linked to autism, neurodevelopment
These complex combinations of organoids afford a closer look at how gene alterations affect certain brain networks.
Rajesh Rao reflects on predictive brains, neural interfaces and the future of human intelligence
Twenty-five years ago, Rajesh Rao proposed a seminal theory of how brains could implement predictive coding for perception. His modern version zeroes in on actions.
Rajesh Rao reflects on predictive brains, neural interfaces and the future of human intelligence
Twenty-five years ago, Rajesh Rao proposed a seminal theory of how brains could implement predictive coding for perception. His modern version zeroes in on actions.