Vikaas Sohal
Associate professor
University of California, San Francisco
From this contributor
‘Outdated’ mouse model exposes key disruptions in autism brain
A mouse model based on exposure to an epilepsy drug offers a useful window into the brain circuits altered in autism.
‘Outdated’ mouse model exposes key disruptions in autism brain
Understanding contradictory connectivity reports in autism
Studies at the level of neural circuits are needed to better understand the importance of both increased and decreased connectivity between different regions in the autism brain, say John Rubenstein and Vikaas Sohal.
Understanding contradictory connectivity reports in autism
Targeting brain microcircuits may help treat autism
Understanding the function of neuronal circuits, specifically microcircuits in the prefrontal cortex and elsewhere in the brain, will play a major role in translating research findings into new autism treatments, says Vikaas Sohal.
Targeting brain microcircuits may help treat autism
Explore more from The Transmitter
Autism prevalence increasing in children, adults, according to electronic medical records
The uptick from 2011 to 2022 in the United States underscores a need for more services and research, the investigators say.
Autism prevalence increasing in children, adults, according to electronic medical records
The uptick from 2011 to 2022 in the United States underscores a need for more services and research, the investigators say.
Immune cell interlopers breach—and repair—brain barrier in mice
The choroid plexus, the protective network of blood vessels and epithelial cells that line the brain’s ventricles, recruits neutrophils and macrophages during inflammation, a new study shows.
Immune cell interlopers breach—and repair—brain barrier in mice
The choroid plexus, the protective network of blood vessels and epithelial cells that line the brain’s ventricles, recruits neutrophils and macrophages during inflammation, a new study shows.
Expanding set of viral tools targets almost any brain cell type
Harmless viruses that encase short noncoding DNA elements called enhancers enable cell-type-specific gene delivery across the central nervous system in rodents and primates.
Expanding set of viral tools targets almost any brain cell type
Harmless viruses that encase short noncoding DNA elements called enhancers enable cell-type-specific gene delivery across the central nervous system in rodents and primates.