Tychele Turner is assistant professor of genetics at the Washington University School of Medicine in St. Louis, Missouri, where her lab focuses on the study of noncoding variation in autism, precision genomics in 9p deletion syndrome, optimization of genomic workflows and the application of long-read sequencing to human genetics.

Tychele Turner
Assistant professor of genetics
Washington University School of Medicine
From this contributor
How long-read sequencing will transform neuroscience
New technology that delivers much more than a simple DNA sequence could have a major impact on brain research, enabling researchers to study transcript diversity, imprinting and more.

How long-read sequencing will transform neuroscience
Focus on function may help unravel autism’s complex genetics
To find the pathogenic mutations in complex disorders such as autism, researchers may need to conduct sophisticated analyses of the genetic functions that are disrupted, says geneticist Aravinda Chakravarti.

Focus on function may help unravel autism’s complex genetics
Explore more from The Transmitter
U.S. health agency purge includes 10 lab heads at National Institute of Neurological Disorders and Stroke
The reasons for selecting these researchers—who have led work on neuronal migration, dopamine receptors in neuronal signaling and the structure of ion channels, among other areas—remain unclear.

U.S. health agency purge includes 10 lab heads at National Institute of Neurological Disorders and Stroke
The reasons for selecting these researchers—who have led work on neuronal migration, dopamine receptors in neuronal signaling and the structure of ion channels, among other areas—remain unclear.
Five things to know if your federal grant is terminated
If you want to appeal the decision, know the rules that govern terminations, as well as the specific rationale given in your notice, science policy experts say.

Five things to know if your federal grant is terminated
If you want to appeal the decision, know the rules that govern terminations, as well as the specific rationale given in your notice, science policy experts say.
It’s time to examine neural coding from the message’s point of view
In studying the brain, we almost always take the neuron’s perspective. But we can gain new insights by reorienting our frame of reference to that of the messages flowing over brain networks.
It’s time to examine neural coding from the message’s point of view
In studying the brain, we almost always take the neuron’s perspective. But we can gain new insights by reorienting our frame of reference to that of the messages flowing over brain networks.