Terrence Sejnowski.

Terrence Sejnowski

Francis Crick Chair
Salk Institute for Biological Studies

Terrence Sejnowski holds the Francis Crick Chair at the Salk Institute for Biological Studies. He is also professor of biology at the University of California, San Diego, where he co-directs the Institute for Neural Computation and the NSF Temporal Dynamics of Learning Center. He is president of the Neural Information Processing Systems Foundation, which organizes an annual conference attended by more than 1,000 researchers in machine learning and neural computation and is founding editor-in-chief of Neural Computation, published by the MIT Press.

As a pioneer in computational neuroscience, Sejnowski’s goal is to understand the principles that link brain to behavior. His laboratory uses both experimental and modeling techniques to study the biophysical properties of synapses and neurons and the population dynamics of large networks of neurons.

He received his Ph.D. in physics from Princeton University and was a postdoctoral fellow at Harvard Medical School. He was on the faculty at the Johns Hopkins University before joining the faculty at the University of California, San Diego. He has published more than 300 scientific papers and 12 books, including “The Computational Brain,” with Patricia Churchland.

Explore more from The Transmitter

A stack of papers topped by many paper shreddings against a red background.

Exclusive: Springer Nature retracts, removes nearly 40 publications that trained neural networks on ‘bonkers’ dataset

The dataset contains images of children’s faces downloaded from websites about autism, which sparked concerns at Springer Nature about consent and reliability.

By Calli McMurray
8 December 2025 | 5 min read
Research image of a virtual environment simulating an animal’s viewpoint close to the ground.

Seeing the world as animals do: How to leverage generative AI for ecological neuroscience

Generative artificial intelligence will offer a new way to see, simulate and hypothesize about how animals experience their worlds. In doing so, it could help bridge the long-standing gap between neural function and behavior.

By Shahab Bakhtiari
8 December 2025 | 8 min read

Psilocybin rewires specific mouse cortical networks in lasting ways

Neuronal activity induced by the psychedelic drug strengthens inputs from sensory brain areas and weakens cortico-cortical recurrent loops.

By Siddhant Pusdekar
5 December 2025 | 0 min watch

privacy consent banner

Privacy Preference

We use cookies to provide you with the best online experience. By clicking “Accept All,” you help us understand how our site is used and enhance its performance. You can change your choice at any time. To learn more, please visit our Privacy Policy.