Terrence Sejnowski.

Terrence Sejnowski

Francis Crick Chair
Salk Institute for Biological Studies

Terrence Sejnowski holds the Francis Crick Chair at the Salk Institute for Biological Studies. He is also professor of biology at the University of California, San Diego, where he co-directs the Institute for Neural Computation and the NSF Temporal Dynamics of Learning Center. He is president of the Neural Information Processing Systems Foundation, which organizes an annual conference attended by more than 1,000 researchers in machine learning and neural computation and is founding editor-in-chief of Neural Computation, published by the MIT Press.

As a pioneer in computational neuroscience, Sejnowski’s goal is to understand the principles that link brain to behavior. His laboratory uses both experimental and modeling techniques to study the biophysical properties of synapses and neurons and the population dynamics of large networks of neurons.

He received his Ph.D. in physics from Princeton University and was a postdoctoral fellow at Harvard Medical School. He was on the faculty at the Johns Hopkins University before joining the faculty at the University of California, San Diego. He has published more than 300 scientific papers and 12 books, including “The Computational Brain,” with Patricia Churchland.

Explore more from The Transmitter

New tissue-clearing techniques let microscopes peer deeper into living brains

Washing mouse brain tissue with a blood protein or complex sugar can illuminate cells 550 micrometers into the cortex without compromising its normal physiology.

By Calli McMurray
18 October 2024 | 0 min watch
A younger looking set of hands holds an older looking set of hands.

New catalog charts familial ties from autism to 90 other conditions

The research tool reveals associations stretching across three generations.

By Charles Q. Choi
17 October 2024 | 4 min read
Illustration of three columns of text with certain passages underlined and circled.

This paper changed my life: ‘Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment,’ from the Fiser Lab

Fiser’s work taught me how to think about grounding computational models in biologically plausible implementations.

By Megan Peters
16 October 2024 | 6 min listen