Terrence Sejnowski.

Terrence Sejnowski

Francis Crick Chair
Salk Institute for Biological Studies

Terrence Sejnowski holds the Francis Crick Chair at the Salk Institute for Biological Studies. He is also professor of biology at the University of California, San Diego, where he co-directs the Institute for Neural Computation and the NSF Temporal Dynamics of Learning Center. He is president of the Neural Information Processing Systems Foundation, which organizes an annual conference attended by more than 1,000 researchers in machine learning and neural computation and is founding editor-in-chief of Neural Computation, published by the MIT Press.

As a pioneer in computational neuroscience, Sejnowski’s goal is to understand the principles that link brain to behavior. His laboratory uses both experimental and modeling techniques to study the biophysical properties of synapses and neurons and the population dynamics of large networks of neurons.

He received his Ph.D. in physics from Princeton University and was a postdoctoral fellow at Harvard Medical School. He was on the faculty at the Johns Hopkins University before joining the faculty at the University of California, San Diego. He has published more than 300 scientific papers and 12 books, including “The Computational Brain,” with Patricia Churchland.

Explore more from The Transmitter

Grid of human brain scans.

Dose, scan, repeat: Tracking the neurological effects of oral contraceptives

We know little about how the brain responds to oral contraceptives, despite their widespread use. I am committed to changing that: I scanned my brain 75 times over the course of a year and plan to make my data openly available.

By Carina Heller
20 January 2025 | 7 min read
Colorful illustration of a latticework of proteins.

Cracking the code of the extracellular matrix

Despite evidence for a role in plasticity and other crucial functions, many neuroscientists still view these proteins as “brain goop.” The field needs technical advances and a shift in scientific thinking to move beyond this outdated perspective.

By Anna Victoria Molofsky
17 January 2025 | 5 min read
A repeated DNA strand extends farther from the left side of the image with each iteration.

Huntington’s disease gene variants past a certain size poison select cells

The findings—providing “the next step in the whole pathway”—help explain the disease’s late onset and offer hope that it has an extended therapeutic window.

By Angie Voyles Askham
16 January 2025 | 6 min read