Ted Satterthwaite

McLure Associate Professor in Psychiatry and Behavioral Research
University of Pennsylvania

Ted Satterthwaite is McLure Associate Professor in Psychiatry and Behavioral Research at the University of Pennsylvania’s Perelman School of Medicine. He completed medical and graduate training at Washington University in St. Louis, where he was a student of Randy L. Buckner. Subsequently, he was a psychiatry resident and a neuropsychiatry fellow at Penn, under the mentorship of Raquel E. Gur. He joined the faculty of the psychiatry department in 2014 and served as director of imaging analytics at the Brain Behavior Laboratory from 2015 to 2019. Since 2020, he has directed the Penn Lifespan Informatics and Neuroimaging Center. His research uses multi-modal neuroimaging to describe both normal and abnormal patterns of brain development, in order to better understand the origins of neuropsychiatric illness. He has been the principal investigator on nine R01 grants from the National Institutes of Health. His work has been recognized with the Brain and Behavior Research Foundation’s Klerman Prize for Clinical Research, the NIMH Biobehavioral Research Award for Innovative New Scientists (BRAINS) award, the NIH Merit Award, as well as several teaching awards.

From this contributor

Explore more from The Transmitter

Research image of the mouse dentate gyrus.

Microglia implicated in infantile amnesia

The glial cells could explain the link between maternal immune activation and autism-like behaviors in mice, but methodological challenges prompt questions about the new evidence.

By Lauren Schneider
12 February 2026 | 5 min read
Research image of myelinated axons.

Oligodendrocytes need mechanical cues to myelinate axons correctly

Without the mechanosensor TMEM63A, the cells cannot deposit the appropriate amount of insulation, according to a new study.

By Calli McMurray
11 February 2026 | 5 min read

Modern AI is simply no match for the complexity likely required for harboring consciousness, says Jaan Aru

He argues that our brain’s computations are of a completely different nature than any artificial intelligence because they take place across many spatial and temporal scales and are inextricably entwined with biological materials.

By Paul Middlebrooks
11 February 2026 | 1 min read

privacy consent banner

Privacy Preference

We use cookies to provide you with the best online experience. By clicking “Accept All,” you help us understand how our site is used and enhance its performance. You can change your choice at any time. To learn more, please visit our Privacy Policy.