Sneha Khedkar is a freelance science journalist based out of Bengaluru, India. She writes about health and life sciences. Her work has appeared in Scientific American, Knowable Magazine, New Scientist and The Scientist, among other publications. She completed an M.Sc. in biochemistry at the Maharaja Sayajirao University of Baroda, after which she was a research fellow studying stem cells in the skin. Her website is https://www.snehakhedkar.com/.
Sneha Khedkar
Contributing writer
From this contributor
Egyptian fruit bats’ neural patterns represent different experimenters
The findings underscore the importance of accounting for “experimenter effects” on lab animals.
Egyptian fruit bats’ neural patterns represent different experimenters
Explore more from The Transmitter
The missing half of the neurodynamical systems theory
Bifurcations—an underexplored concept in neuroscience—can help explain how small differences in neural circuits give rise to entirely novel functions.
The missing half of the neurodynamical systems theory
Bifurcations—an underexplored concept in neuroscience—can help explain how small differences in neural circuits give rise to entirely novel functions.
Remembering GABA pioneer Edward Kravitz
The biochemist, who died last month at age 92, was part of the first neurobiology department in the world and showed that gamma-aminobutyric acid is inhibitory.
Remembering GABA pioneer Edward Kravitz
The biochemist, who died last month at age 92, was part of the first neurobiology department in the world and showed that gamma-aminobutyric acid is inhibitory.
Protein tug-of-war controls pace of synaptic development, sets human brains apart
Human-specific duplicates of SRGAP2 prolong cortical development by manipulating SYNGAP, an autism-linked protein that slows synaptic growth.
Protein tug-of-war controls pace of synaptic development, sets human brains apart
Human-specific duplicates of SRGAP2 prolong cortical development by manipulating SYNGAP, an autism-linked protein that slows synaptic growth.