Richard Bethlehem is a postdoctoral fellow and research associate at the Autism Research Centre and Brain Mapping Unit at the University of Cambridge in the United Kingdom. He studies integrated neuroimaging and transcriptomics to gain better understanding of the biological underpinnings of typical and atypical neurodevelopment.
Richard Bethlehem
Research associate
University of Cambridge
From this contributor
Q&A with Richard Bethlehem: What goes into a Brainhack
Brainhack conferences offer talks and hands-on tutorials, and unite small groups of interdisciplinary researchers to work on open-source neuroscience projects.
Q&A with Richard Bethlehem: What goes into a Brainhack
How normative modeling can reframe autism’s heterogeneity
Normative modeling could capture variability among autistic people and allow for individualized assessments.
How normative modeling can reframe autism’s heterogeneity
Explore more from The Transmitter
‘Neuroethics: The Implications of Mapping and Changing the Brain,’ an excerpt
In his new book, published today, philosopher Walter Glannon examines the ethics of six areas of neuroscience. In Chapter 4, a portion of which appears below, he tackles the ethical considerations of using brain organoids in research.
‘Neuroethics: The Implications of Mapping and Changing the Brain,’ an excerpt
In his new book, published today, philosopher Walter Glannon examines the ethics of six areas of neuroscience. In Chapter 4, a portion of which appears below, he tackles the ethical considerations of using brain organoids in research.
Teasing out mosaicism cell by cell; and more
Here is a roundup of autism-related news and research spotted around the web for the week of 10 November.
Teasing out mosaicism cell by cell; and more
Here is a roundup of autism-related news and research spotted around the web for the week of 10 November.
Without monkeys, neuroscience has no future
Research in primate brains has been essential for the development of brain-computer interfaces and artificial neural networks. New funding and policy changes put the future of such advances at risk.
Without monkeys, neuroscience has no future
Research in primate brains has been essential for the development of brain-computer interfaces and artificial neural networks. New funding and policy changes put the future of such advances at risk.