Randy McIntosh is professor and BC leadership chair in neuroscience and technology transfer across the lifespan, and director of the Institute for Neuroscience and Neurotechnology, at Simon Fraser University. He holds a Ph.D. in psychology and neuroscience with a strong background in statistics. His research journey began at the Rotman Research Institute at the University of Toronto, where he developed a keen interest in understanding aging and cognition. McIntosh is the co-lead for the team that created The Virtual Brain (thevirtualbrain.org), a groundbreaking platform that unites global research efforts.
Randy McIntosh
Director, Institute for Neuroscience and Neurotechnology
Simon Fraser University
Selected articles
- “Partial least squares analysis of neuroimaging data: Applications and advances” | NeuroImage
- “Contexts and catalysts: A resolution of the localization and integration of function in the brain” | Neuroinformatics
- “Emerging concepts for the dynamical organization of resting-state activity in the brain” | Nature Reviews Neuroscience
- “Resting brains never rest: Computational insights into potential cognitive architectures” | Trends in Neurosciences
- “The hidden repertoire of brain dynamics and dysfunction” | Network Neuroscience
Explore more from The Transmitter
The non-model organism “renaissance” has arrived
Meet 10 neuroscientists bringing model diversity back with the funky animals they study.
The non-model organism “renaissance” has arrived
Meet 10 neuroscientists bringing model diversity back with the funky animals they study.
Assembloids illuminate circuit-level changes linked to autism, neurodevelopment
These complex combinations of organoids afford a closer look at how gene alterations affect certain brain networks.
Assembloids illuminate circuit-level changes linked to autism, neurodevelopment
These complex combinations of organoids afford a closer look at how gene alterations affect certain brain networks.
Rajesh Rao reflects on predictive brains, neural interfaces and the future of human intelligence
Twenty-five years ago, Rajesh Rao proposed a seminal theory of how brains could implement predictive coding for perception. His modern version zeroes in on actions.
Rajesh Rao reflects on predictive brains, neural interfaces and the future of human intelligence
Twenty-five years ago, Rajesh Rao proposed a seminal theory of how brains could implement predictive coding for perception. His modern version zeroes in on actions.