Mu Yang is a behavioral neuroscientist and the director of the Mouse NeuroBehavior Core at Columbia University Medical Center. She received training in animal behavior and neuroethology in the lab of the late Robert Blanchard at the University of Hawaii, where she earned her Ph.D. In 2006, she joined the lab of Jacqueline Crawley at the National Institute of Mental Health for postdoctoral training. She spent 2012 to 2016 as an assistant professor in the department of psychiatry and behavioral sciences and a faculty member at the MIND Institute at the University California, Davis. In 2016, she joined Columbia’s Institute for Genomic Medicine to lead the university’s first centralized state-of-the-art mouse behavior phenotyping facility. Since summer 2017, her team has provided testing and data analysis services to over 30 Columbia research groups.
Mu Yang
Director of the Mouse NeuroBehavior Core
Columbia University Medical Center
Explore more from The Transmitter
PIEZO channels are opening the study of mechanosensation in unexpected places
The force-activated ion channels underlie the senses of touch and proprioception. Now scientists are using them as a tool to explore molecular mechanisms at work in internal organs, including the heart, bladder, uterus and kidney.
PIEZO channels are opening the study of mechanosensation in unexpected places
The force-activated ion channels underlie the senses of touch and proprioception. Now scientists are using them as a tool to explore molecular mechanisms at work in internal organs, including the heart, bladder, uterus and kidney.
Latest iteration of U.S. federal autism committee comes under fire
The new panel “represents a radical departure from all past rosters,” says autism researcher Helen Tager-Flusberg.
Latest iteration of U.S. federal autism committee comes under fire
The new panel “represents a radical departure from all past rosters,” says autism researcher Helen Tager-Flusberg.
‘Tour de force’ study flags fount of interneurons in human brain
The newly discovered cell type might point to the origins of the inhibitory imbalance linked to autism and other conditions.
‘Tour de force’ study flags fount of interneurons in human brain
The newly discovered cell type might point to the origins of the inhibitory imbalance linked to autism and other conditions.