Michael E. Goldberg is David Mahoney Professor of Brain and Behavior in the departments of neuroscience, neurology, psychiatry and ophthalmology at Columbia University College of Physicians and Surgeons, director of the Mahoney-Keck Center for Brain and Behavior Research, and is an active clinical neurologist. His neuroscience research focuses on the physiological basis of cognitive processes such as visual attention, spatial perception and decision-making. He earned his M.D. from Harvard Medical School in 1968. From 1978 to 2001, Goldberg was a senior investigator at the Laboratory of Sensorimotor Research at the National Eye Institute in Bethesda, Maryland. He is a fellow of the American Academy of Arts and Sciences and the American Association for the Advancement of Science, and an elected member of the National Academy of Sciences. He is a past president of the Society for Neuroscience, and now chair of the society’s Committee on Animals in Research.
Michael E. Goldberg
David Mahoney Professor of Brain and Behavior
Columbia University
Explore more from The Transmitter
Dispute erupts over universal cortical brain-wave claim
The debate highlights opposing views on how the cortex transmits information.
Dispute erupts over universal cortical brain-wave claim
The debate highlights opposing views on how the cortex transmits information.
Waves of calcium activity dictate eye structure in flies
Synchronized signals in non-neuronal retinal cells draw the tiny compartments of a fruit fly’s compound eye into alignment during pupal development.
Waves of calcium activity dictate eye structure in flies
Synchronized signals in non-neuronal retinal cells draw the tiny compartments of a fruit fly’s compound eye into alignment during pupal development.
Among brain changes studied in autism, spotlight shifts to subcortex
The striatum and thalamus are more likely than the cerebral cortex to express autism variants or bear transcriptional changes, two unpublished studies find.
Among brain changes studied in autism, spotlight shifts to subcortex
The striatum and thalamus are more likely than the cerebral cortex to express autism variants or bear transcriptional changes, two unpublished studies find.