Lydia Hickman is a graduate student in the Cook Lab at the University of Birmingham in the United Kingdom. In her Ph.D. work, she explores the fundamental biological mechanisms underlying motor function and social cognition in the context of autism and Parkinson’s disease. Lydia co-founded the U21 Autism Research Network, an international collaboration among six research groups aiming to improve diversity and inclusion in autism research.
Lydia Hickman
Graduate student
University of Birmingham in the United Kingdom
From this contributor
Ways to make autism research more diverse and inclusive
Scientists must focus on the importance of representative study samples and of engaging with diverse autism community members.
Ways to make autism research more diverse and inclusive
Explore more from The Transmitter
David Krakauer reflects on the foundations and future of complexity science
In his book “The Complex World,” Krakauer explores how complexity science developed, from its early roots to the four pillars that now define it—entropy, evolution, dynamics and computation.
David Krakauer reflects on the foundations and future of complexity science
In his book “The Complex World,” Krakauer explores how complexity science developed, from its early roots to the four pillars that now define it—entropy, evolution, dynamics and computation.
White-matter changes; lipids and neuronal migration; dementia
Here is a roundup of autism-related news and research spotted around the web for the week of 13 January.
White-matter changes; lipids and neuronal migration; dementia
Here is a roundup of autism-related news and research spotted around the web for the week of 13 January.
Fleeting sleep interruptions may help brain reset
Brief, seconds-long microarousals during deep sleep “ride on the wave” of locus coeruleus activity in mice and correlate with periods of waste clearing and memory consolidation, new research suggests.
Fleeting sleep interruptions may help brain reset
Brief, seconds-long microarousals during deep sleep “ride on the wave” of locus coeruleus activity in mice and correlate with periods of waste clearing and memory consolidation, new research suggests.