Lydia Hickman is a graduate student in the Cook Lab at the University of Birmingham in the United Kingdom. In her Ph.D. work, she explores the fundamental biological mechanisms underlying motor function and social cognition in the context of autism and Parkinson’s disease. Lydia co-founded the U21 Autism Research Network, an international collaboration among six research groups aiming to improve diversity and inclusion in autism research.
Lydia Hickman
Graduate student
University of Birmingham in the United Kingdom
From this contributor
Ways to make autism research more diverse and inclusive
Scientists must focus on the importance of representative study samples and of engaging with diverse autism community members.
Ways to make autism research more diverse and inclusive
Explore more from The Transmitter
PIEZO channels are opening the study of mechanosensation in unexpected places
The force-activated ion channels underlie the senses of touch and proprioception. Now scientists are using them as a tool to explore molecular mechanisms at work in internal organs, including the heart, bladder, uterus and kidney.
PIEZO channels are opening the study of mechanosensation in unexpected places
The force-activated ion channels underlie the senses of touch and proprioception. Now scientists are using them as a tool to explore molecular mechanisms at work in internal organs, including the heart, bladder, uterus and kidney.
Latest iteration of U.S. federal autism committee comes under fire
The new panel “represents a radical departure from all past rosters,” says autism researcher Helen Tager-Flusberg.
Latest iteration of U.S. federal autism committee comes under fire
The new panel “represents a radical departure from all past rosters,” says autism researcher Helen Tager-Flusberg.
‘Tour de force’ study flags fount of interneurons in human brain
The newly discovered cell type might point to the origins of the inhibitory imbalance linked to autism and other conditions.
‘Tour de force’ study flags fount of interneurons in human brain
The newly discovered cell type might point to the origins of the inhibitory imbalance linked to autism and other conditions.