Loren Frank.

Loren Frank

Professor of physiology
University of California, San Francisco

Loren Frank is Howard Hughes Medical Institute Investigator and professor of physiology at the University of California, San Francisco (UCSF). He is also director of the Kavli Institute for Fundamental Neuroscience at UCSF. His laboratory uses a combination of techniques to study the neural bases of learning, memory and decision-making. In particular, his work focuses on the hippocampus and related structures, brain areas critical for forming and retrieving memories for the events of daily life. He also works in close collaboration with colleagues from multiple institutions to develop new technologies to understand how the brain works and how to fix it when it is not working properly. These technologies include flexible polymer electrodes that make it possible to record from large numbers of neurons for months at a time.

Frank received his B.A. in psychology and cognitive studies from Carleton College, his Ph.D. in systems neuroscience and computation from the Massachusetts Institute of Technology, and he did postdoctoral research at Massachusetts General Hospital and Harvard University.

He has received numerous awards for his scientific discoveries and his mentoring, including fellowships from the Sloan, McKnight and Merck Foundations, as well as the Society for Neuroscience Young Investigator Award, the Indiana University Gill Center’s Young Investigator Award, the UCSF Faculty Mentoring Award, and the College Mentors for Kids Inspire Award.

Explore more from The Transmitter

Grid of human brain scans.

Dose, scan, repeat: Tracking the neurological effects of oral contraceptives

We know little about how the brain responds to oral contraceptives, despite their widespread use. I am committed to changing that: I scanned my brain 75 times over the course of a year and plan to make my data openly available.

By Carina Heller
20 January 2025 | 7 min read
Colorful illustration of a latticework of proteins.

Cracking the code of the extracellular matrix

Despite evidence for a role in plasticity and other crucial functions, many neuroscientists still view these proteins as “brain goop.” The field needs technical advances and a shift in scientific thinking to move beyond this outdated perspective.

By Anna Victoria Molofsky
17 January 2025 | 5 min read
A repeated DNA strand extends farther from the left side of the image with each iteration.

Huntington’s disease gene variants past a certain size poison select cells

The findings—providing “the next step in the whole pathway”—help explain the disease’s late onset and offer hope that it has an extended therapeutic window.

By Angie Voyles Askham
16 January 2025 | 6 min read