Lauren N Ross.

Lauren N. Ross

Associate professor of logic and philosophy of science
University of California, Irvine

Lauren N. Ross is associate professor of logic and philosophy of science at the University of California, Irvine. Her research concerns causal reasoning and explanation in the life sciences, primarily neuroscience and biology.  One main area of her research explores causal varieties—different types of causes, causal relationships and causal systems in the life sciences. Her work identifies the features characteristic of these causal varieties and their implications for how these systems are studied, how they figure in scientific explanations and how they behave. A second main area of work focuses on types of explanation in neuroscience and biology, including distinct forms of causal and noncausal explanation.

Ross’ research has received a National Science Foundation CAREER award, a Humboldt Experienced Researcher Fellowship, a John Templeton Foundation Grant, and an Editor’s Choice Award at the British Journal for the Philosophy of Science.  Recent publications include “Causation in neuroscience: Keeping mechanism meaningful” with Dani S. Bassett in Nature Reviews Neuroscience and a forthcoming book, “Explanation in Biology” (Cambridge University Press: Elements Series).

Explore more from The Transmitter

Grid of human brain scans.

Dose, scan, repeat: Tracking the neurological effects of oral contraceptives

We know little about how the brain responds to oral contraceptives, despite their widespread use. I am committed to changing that: I scanned my brain 75 times over the course of a year and plan to make my data openly available.

By Carina Heller
20 January 2025 | 7 min read
Colorful illustration of a latticework of proteins.

Cracking the code of the extracellular matrix

Despite evidence for a role in plasticity and other crucial functions, many neuroscientists still view these proteins as “brain goop.” The field needs technical advances and a shift in scientific thinking to move beyond this outdated perspective.

By Anna Victoria Molofsky
17 January 2025 | 5 min read
A repeated DNA strand extends farther from the left side of the image with each iteration.

Huntington’s disease gene variants past a certain size poison select cells

The findings—providing “the next step in the whole pathway”—help explain the disease’s late onset and offer hope that it has an extended therapeutic window.

By Angie Voyles Askham
16 January 2025 | 6 min read