Kristin Ozelli oversees day-to-day operations, manages the editorial team and steers the production of articles, newsletters and multimedia content. She joined the Simons Foundation in 2017 as features editor of Spectrum. Previously, she was editorial director, online, and a senior editor at Scientific American, and a senior editor at Scientific American MIND. She has also written a book about Jupiter’s moons and volunteered at the Natural History Museum in London, assisting the curator of fossil cephalopods.

Kristin Ozelli
Executive editor
The Transmitter
From this contributor

Spotted around the web: INSAR; cerebellar gene expression; pangenome

Beyond the bench: Mastering meaningful movement with Karen Chenausky

Spotted around the web: Interpersonal synchrony, single-nucleotide polymorphisms, CRISPR at 10
Education
- M.A. in journalism, New York University
- B.S. in English, Massachusetts Institute of Technology
- B.S. in mathematics, Massachusetts Institute of Technology
Explore more from The Transmitter
Exclusive: Recruitment issues jeopardize ambitious plan for human brain atlas
A lack of six new brain donors may stop the project from meeting its goal to pair molecular and cellular data with the functional organization of the cortex.

Exclusive: Recruitment issues jeopardize ambitious plan for human brain atlas
A lack of six new brain donors may stop the project from meeting its goal to pair molecular and cellular data with the functional organization of the cortex.
How pragmatism and passion drive Fred Volkmar—even after retirement
Whether looking back at his career highlights or forward to his latest projects, the psychiatrist is committed to supporting autistic people at every age.

How pragmatism and passion drive Fred Volkmar—even after retirement
Whether looking back at his career highlights or forward to his latest projects, the psychiatrist is committed to supporting autistic people at every age.
The brain’s quiet conductor: How hidden cells fine-tune arousal
New research published today suggests that the pericoeruleus acts as a kind of micromanager of arousal, selectively inhibiting different subgroups of locus coeruleus neurons depending on the behavioral context.
The brain’s quiet conductor: How hidden cells fine-tune arousal
New research published today suggests that the pericoeruleus acts as a kind of micromanager of arousal, selectively inhibiting different subgroups of locus coeruleus neurons depending on the behavioral context.