Kari Hoffman.

Kari Hoffman

Associate professor of psychology
Vanderbilt University

Kari Hoffman is associate professor of psychology at Vanderbilt University, specializing in computational primate neuroethology within the Vanderbilt Brain institute, the Data Science Institute, the Department of Biomedical Engineering and the Department of Psychology. Her research investigates how neural circuits organize and adapt to allow an organism to build and apply knowledge effectively.

Hoffman’s lab uses naturalistic, contingent tasks with primate models to understand brain function in real-world contexts, focusing on how memories are structured over time. To understand neural population organization during and after learning, her team uses high-density, wireless multisite ensemble recordings. These neural and behavioral measures are then compared with computational models of learning and generalization.

Hoffman earned her Ph.D. in systems and computational neuroscience from the University of Arizona and completed a postdoctoral fellowship in the lab of Nikos Logothetis at the Max Planck Institute in Tübingen, Germany. Her contributions to neuroscience have been recognized with Sloan and Whitehall fellowships, an Ontario Early Researcher Award, and designation as a Kavli fellow.

Explore more from The Transmitter

Genetic profiles separate early, late autism diagnoses

Age at diagnosis reflects underlying differences in common genetic variants and developmental trajectories among people with autism.

By Natalia Mesa
27 November 2025 | 5 min read

To persist, memories surf molecular waves from thalamus to cortex

During the later stages of learning, the mouse brain progressively activates transcriptional regulators that drive memory consolidation.

By Claudia López Lloreda
26 November 2025 | 4 min read

Sex hormone boosts female rats’ sensitivity to unexpected rewards

During the high-estradiol stages of their estrus cycle, female rats learn faster than they do during other stages—and than male rats overall—thanks to a boost in their dopaminergic response to reward, a new study suggests.

By Angie Voyles Askham
26 November 2025 | 5 min read

privacy consent banner

Privacy Preference

We use cookies to provide you with the best online experience. By clicking “Accept All,” you help us understand how our site is used and enhance its performance. You can change your choice at any time. To learn more, please visit our Privacy Policy.