Kari Hoffman.

Kari Hoffman

Associate professor of psychology
Vanderbilt University

Kari Hoffman is associate professor of psychology at Vanderbilt University, specializing in computational primate neuroethology within the Vanderbilt Brain institute, the Data Science Institute, the Department of Biomedical Engineering and the Department of Psychology. Her research investigates how neural circuits organize and adapt to allow an organism to build and apply knowledge effectively.

Hoffman’s lab uses naturalistic, contingent tasks with primate models to understand brain function in real-world contexts, focusing on how memories are structured over time. To understand neural population organization during and after learning, her team uses high-density, wireless multisite ensemble recordings. These neural and behavioral measures are then compared with computational models of learning and generalization.

Hoffman earned her Ph.D. in systems and computational neuroscience from the University of Arizona and completed a postdoctoral fellowship in the lab of Nikos Logothetis at the Max Planck Institute in Tübingen, Germany. Her contributions to neuroscience have been recognized with Sloan and Whitehall fellowships, an Ontario Early Researcher Award, and designation as a Kavli fellow.

Explore more from The Transmitter

Illustration of three columns of text with certain passages underlined and circled.

This paper changed my life: ‘Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment,’ from the Fiser Lab

Fiser’s work taught me how to think about grounding computational models in biologically plausible implementations.

By Megan Peters
16 October 2024 | 5 min read
Research image of brain scans showing the density of neuronal synapses.

SYNGAP1; executive function; synaptic density

Here is a roundup of autism-related news and research spotted around the web for the week of 14 October.

By Jill Adams
15 October 2024 | 2 min read
Two mice fighting.

Synaptic changes shape winning mice into bullies

When a mouse repeatedly defeats its opponents, brain circuits that underlie aggressive behaviors develop more stable connections, helping to ensure continual triumph, a new study shows.

By Claudia López Lloreda
14 October 2024 | 6 min read