Kari Hoffman.

Kari Hoffman

Associate professor of psychology
Vanderbilt University

Kari Hoffman is associate professor of psychology at Vanderbilt University, specializing in computational primate neuroethology within the Vanderbilt Brain institute, the Data Science Institute, the Department of Biomedical Engineering and the Department of Psychology. Her research investigates how neural circuits organize and adapt to allow an organism to build and apply knowledge effectively.

Hoffman’s lab uses naturalistic, contingent tasks with primate models to understand brain function in real-world contexts, focusing on how memories are structured over time. To understand neural population organization during and after learning, her team uses high-density, wireless multisite ensemble recordings. These neural and behavioral measures are then compared with computational models of learning and generalization.

Hoffman earned her Ph.D. in systems and computational neuroscience from the University of Arizona and completed a postdoctoral fellowship in the lab of Nikos Logothetis at the Max Planck Institute in Tübingen, Germany. Her contributions to neuroscience have been recognized with Sloan and Whitehall fellowships, an Ontario Early Researcher Award, and designation as a Kavli fellow.

Explore more from The Transmitter

Alex Maier argues that a scientific explanation of consciousness requires grounding in formalized mathematics

When it comes to discovering laws of nature for consciousness similar to those in physics, Maier argues that integrated information theory is the only game in town.

By Paul Middlebrooks
7 January 2026 | 1 min read
Two goats headbutting.

Neuro’s ark: How goats can model neurodegeneration

Since debunking an urban legend that headbutting animals don’t damage their brain, Nicole Ackermans has been investigating how the behavior correlates with neurodegeneration.

By Calli McMurray
7 January 2026 | 6 min read
Research images of the mouse visual cortex.

Astrocytes stabilize circuits in adult mouse brain

The glial cells secrete a protein that suppresses plasticity post-development.

By Holly Barker
6 January 2026 | 5 min read

privacy consent banner

Privacy Preference

We use cookies to provide you with the best online experience. By clicking “Accept All,” you help us understand how our site is used and enhance its performance. You can change your choice at any time. To learn more, please visit our Privacy Policy.