Evan Schaffer is assistant professor of neuroscience at the Friedman Brain Institute at the Icahn School of Medicine at Mount Sinai. His lab uses mathematical tools to understand distributed computations in the brain, identify how these computations change with learning and identify how feedback from the body impacts cognition. Schaffer received his Ph.D. at the Center for Theoretical Neuroscience, in Larry Abbott’s lab at Columbia University. He completed his postdoctoral work in Richard Axel’s Lab at Columbia University
Evan Schaffer
Assistant professor of neuroscience
Icahn School of Medicine at Mount Sinai
Selected articles
- “Inhibitory stabilization of the cortical network underlies visual surround suppression” | Neuron
- “A complex-valued firing-rate model that approximates the dynamics of spiking networks” | PLoS Computational Biology
- “Odor perception on the two sides of the brain: Consistency despite randomness” | Neuron
- “The spatial and temporal structure of neural activity across the fly brain” | Nature Communications
- “Behavioral fingerprinting of the naked mole-rat uncovers signatures of eusociality and social touch” | bioRxiv
Explore more from The Transmitter
This paper changed my life: John Tuthill reflects on the subjectivity of selfhood
Wittlinger, Wehner and Wolf’s 2006 “stilts and stumps” Science paper revealed how ants pull off extraordinary feats of navigation using a biological odometer, and it inspired Tuthill to consider how other insects sense their own bodies.
This paper changed my life: John Tuthill reflects on the subjectivity of selfhood
Wittlinger, Wehner and Wolf’s 2006 “stilts and stumps” Science paper revealed how ants pull off extraordinary feats of navigation using a biological odometer, and it inspired Tuthill to consider how other insects sense their own bodies.
Some facial expressions are less reflexive than previously thought
A countenance such as a grimace activates many of the same cortical pathways as voluntary facial movements.
Some facial expressions are less reflexive than previously thought
A countenance such as a grimace activates many of the same cortical pathways as voluntary facial movements.
Cracking the neural code for emotional states
Rather than act as a simple switchboard for innate behaviors, the hypothalamus encodes an animal's internal state, which influences behavior.
Cracking the neural code for emotional states
Rather than act as a simple switchboard for innate behaviors, the hypothalamus encodes an animal's internal state, which influences behavior.