Evan Schaffer is assistant professor of neuroscience at the Friedman Brain Institute at the Icahn School of Medicine at Mount Sinai. His lab uses mathematical tools to understand distributed computations in the brain, identify how these computations change with learning and identify how feedback from the body impacts cognition. Schaffer received his Ph.D. at the Center for Theoretical Neuroscience, in Larry Abbott’s lab at Columbia University. He completed his postdoctoral work in Richard Axel’s Lab at Columbia University
Evan Schaffer
Assistant professor of neuroscience
Icahn School of Medicine at Mount Sinai
Selected articles
- “Inhibitory stabilization of the cortical network underlies visual surround suppression” | Neuron
- “A complex-valued firing-rate model that approximates the dynamics of spiking networks” | PLoS Computational Biology
- “Odor perception on the two sides of the brain: Consistency despite randomness” | Neuron
- “The spatial and temporal structure of neural activity across the fly brain” | Nature Communications
- “Behavioral fingerprinting of the naked mole-rat uncovers signatures of eusociality and social touch” | bioRxiv
Explore more from The Transmitter
How to collaborate with AI
To make the best use of LLMs in research, turn your scientific question into a set of concrete, checkable proposals, wire up an automatic scoring loop, and let the AI iterate.
How to collaborate with AI
To make the best use of LLMs in research, turn your scientific question into a set of concrete, checkable proposals, wire up an automatic scoring loop, and let the AI iterate.
How artificial agents can help us understand social recognition
Neuroscience is chasing the complexity of social behavior, yet we have not answered the simplest question in the chain: How does a brain know “who is who”? Emerging multi-agent artificial intelligence may help accelerate our understanding of this fundamental computation.
How artificial agents can help us understand social recognition
Neuroscience is chasing the complexity of social behavior, yet we have not answered the simplest question in the chain: How does a brain know “who is who”? Emerging multi-agent artificial intelligence may help accelerate our understanding of this fundamental computation.
Methodological flaw may upend network mapping tool
The lesion network mapping method, used to identify disease-specific brain networks for clinical stimulation, produces a nearly identical network map for any given condition, according to a new study.
Methodological flaw may upend network mapping tool
The lesion network mapping method, used to identify disease-specific brain networks for clinical stimulation, produces a nearly identical network map for any given condition, according to a new study.