Elizabeth Repasky is Lawrence J. Minet Professor of Immunology and program leader for the Cancer Stress Biology Program at Roswell Park Comprehensive Cancer Center. She graduated from Seton Hill University with a B.A. in biology, received her Ph.D. from the Buffalo State University and did a postdoctoral fellowship at the California Institute of Technology. Her research on thermal stress and the impact of thermoregulatory pathways on the anti-tumor immune response has been a long-standing passion. Repasky has been recognized as a distinguished biomedical alumna of the Jacobs School of Medicine and Biomedical Sciences at Buffalo State University. She is a recipient of the Dr. Thomas B. Tomasi Hope Award at Roswell Park and of both the J. Eugene Robinson and William C. Dewey Awards for her contributions to the field of thermal medicine.

Elizabeth Repasky
Professor of immunology
Roswell Park Comprehensive Cancer Center
From this contributor

Mouse housing temperatures can cook experimental outcomes
Selected articles
- “Baseline tumor growth and immune control in laboratory mice are significantly influenced by sub-thermoneutral housing temperature” | PNAS
- “Manipulation of ambient housing temperature to study the impact of chronic stress on immunity and cancer in mice” | Journal of Immunology
- “β2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells” | Journal of Clinical Investigation
- “Chronic adrenergic stress contributes to metabolic dysfunction and an exhausted phenotype in T Cells in the tumor microenvironment” | Cancer Immunology Research
- “How murine models of human disease and immunity are influenced by housing temperature and mild thermal stress” | Temperature
Explore more from The Transmitter
Gene-activity map of developing brain reveals new clues about autism’s sex bias
Boys and girls may be vulnerable to different genetic changes, which could help explain why the condition is more common in boys despite linked variants appearing more often in girls.

Gene-activity map of developing brain reveals new clues about autism’s sex bias
Boys and girls may be vulnerable to different genetic changes, which could help explain why the condition is more common in boys despite linked variants appearing more often in girls.
Engrams in amygdala lean on astrocytes to solidify memories
Disrupting the astrocyte-neuronal dynamic in mice destabilizes their memory of fear conditioning.

Engrams in amygdala lean on astrocytes to solidify memories
Disrupting the astrocyte-neuronal dynamic in mice destabilizes their memory of fear conditioning.
Parsing phenotypes in people with shared autism-linked variants; and more
Here is a roundup of autism-related news and research spotted around the web for the week of 13 October.

Parsing phenotypes in people with shared autism-linked variants; and more
Here is a roundup of autism-related news and research spotted around the web for the week of 13 October.