David Barack is a philosopher and neuroscientist who studies the neural circuits of foraging behavior and the conceptual foundations of cognitive neuroscience. He is a postdoctoral researcher at the University of Pennsylvania. After earning his B.A. in consciousness studies at Pitzer College, he received his M.A. in philosophy from the University of Wisconsin-Milwaukee and his Ph.D. in philosophy from Duke University, where he also received a certificate in cognitive neuroscience. He is currently writing a book on the neurodynamical foundations of mind.

David Barack
Research associate in neuroscience and philosophy
University of Pennsylvania
From this contributor
Must a theory be falsifiable to contribute to good science?
Four researchers debate the role that non-testable theories play in neuroscience.

Must a theory be falsifiable to contribute to good science?
Explore more from The Transmitter
Exclusive: Recruitment issues jeopardize ambitious plan for human brain atlas
A lack of six new brain donors may stop the project from meeting its goal to pair molecular and cellular data with the functional organization of the cortex.

Exclusive: Recruitment issues jeopardize ambitious plan for human brain atlas
A lack of six new brain donors may stop the project from meeting its goal to pair molecular and cellular data with the functional organization of the cortex.
How pragmatism and passion drive Fred Volkmar—even after retirement
Whether looking back at his career highlights or forward to his latest projects, the psychiatrist is committed to supporting autistic people at every age.

How pragmatism and passion drive Fred Volkmar—even after retirement
Whether looking back at his career highlights or forward to his latest projects, the psychiatrist is committed to supporting autistic people at every age.
The brain’s quiet conductor: How hidden cells fine-tune arousal
New research published today suggests that the pericoeruleus acts as a kind of micromanager of arousal, selectively inhibiting different subgroups of locus coeruleus neurons depending on the behavioral context.
The brain’s quiet conductor: How hidden cells fine-tune arousal
New research published today suggests that the pericoeruleus acts as a kind of micromanager of arousal, selectively inhibiting different subgroups of locus coeruleus neurons depending on the behavioral context.