Christine Wu Nordahl is professor of psychiatry and behavioral sciences at the University of California, Davis MIND Institute.

Christine Wu Nordahl
Assistant professor
University of California, Davis
From this contributor
Early brain enlargement augurs distinct form of autism
A minority of boys with autism have brains that are unusually large relative to their bodies — a trait tied to regression and intellectual disability.

Early brain enlargement augurs distinct form of autism
Questions for Nordahl, Mello: Scans for children with autism
Techniques used in behavioral interventions could help scientists scan the brains of children who have both autism and intellectual disability.

Questions for Nordahl, Mello: Scans for children with autism
Charting typical brain development
How can we characterize what is atypical when we don’t fully understand what typical brain development looks like, particularly under the age of 5? Christine Wu Nordahl explains the importance of scanning the brains of typically developing children.
Explore more from The Transmitter
Exclusive: Recruitment issues jeopardize ambitious plan for human brain atlas
A lack of six new brain donors may stop the project from meeting its goal to pair molecular and cellular data with the functional organization of the cortex.

Exclusive: Recruitment issues jeopardize ambitious plan for human brain atlas
A lack of six new brain donors may stop the project from meeting its goal to pair molecular and cellular data with the functional organization of the cortex.
How pragmatism and passion drive Fred Volkmar—even after retirement
Whether looking back at his career highlights or forward to his latest projects, the psychiatrist is committed to supporting autistic people at every age.

How pragmatism and passion drive Fred Volkmar—even after retirement
Whether looking back at his career highlights or forward to his latest projects, the psychiatrist is committed to supporting autistic people at every age.
The brain’s quiet conductor: How hidden cells fine-tune arousal
New research published today suggests that the pericoeruleus acts as a kind of micromanager of arousal, selectively inhibiting different subgroups of locus coeruleus neurons depending on the behavioral context.
The brain’s quiet conductor: How hidden cells fine-tune arousal
New research published today suggests that the pericoeruleus acts as a kind of micromanager of arousal, selectively inhibiting different subgroups of locus coeruleus neurons depending on the behavioral context.