Alan Packer


Alan Packer joined the Simons Foundation in 2009 as an associate director of research. He earned his undergraduate degree in biology from Brandeis University and his Ph.D. in cell biology and genetics from the Weill Cornell Graduate School of Medical Sciences in New York City. His graduate work with Rosemary Bachvarova focused on germ cell development using the mouse as a model system. With Debra Wolgemuth at the Columbia University College of Physicians and Surgeons, he carried out postdoctoral work on developmental control genes (HOX genes) and the mechanisms of their regulation in the mouse embryo. In 2000, Packer joined the editorial staff of Nature Genetics, the leading journal in the field of genetics, where he was involved in all aspects of the journal’s production. His responsibilities included overseeing peer review of submitted manuscripts, with an emphasis on the genetics of human disease, as well as commissioning reviews, writing press releases and editorials, updating the journal’s website, and preparing special issues of the journal. He served as acting editor in 2002-2003. During his tenure at Nature Genetics, he established a wide range of contacts in the genetics community through attendance at meetings and visits with scientists in their labs. Packer has also done freelance writing on a number of topics for Nature and other scientific publications.

From this contributor

Explore more from The Transmitter

Cell population in brainstem coordinates cough, new study shows

The work also adds to a growing body of evidence showing that mice, and their genetic toolbox, can be used to study cough.

By Calli McMurray
6 September 2024 | 5 min read
Capitol building
Spectrum Microphone

In updated U.S. autism bill, Congress calls for funding boost, expanded scope

The current Autism CARES Act sunsets in late September.

By Rachel Zamzow
5 September 2024 | 5 min listen
Illustration of ketamine blocking open ion channels in active NMDA receptors, quieting the cells and disrupting downstream signaling involved in depression.

Ketamine targets lateral habenula, setting off cascade of antidepressant effects

The drug’s affinity for overactive cells in the “anti-reward” region may help explain its rapid and long-lasting results.

By Olivia Gieger
4 September 2024 | 6 min read