Earl K. Miller is Picower Professor of Neuroscience at the Massachusetts Institute of Technology, with faculty roles in the Picower Institute for Learning and Memory and the Department of Brain and Cognitive Sciences. His lab focuses on neural mechanisms of cognition, especially working memory, attention and executive control, using both experimental and computational methods. He holds a B.A. from Kent State University and an M.A. and Ph.D. from Princeton University. In 2020, he received an honorary Doctor of Science degree from Kent State University.
Earl K. Miller
Professor of neuroscience
Massachusetts Institute of Technology
Selected articles
- “An integrative theory of prefrontal cortex function” | Annual Review of Neuroscience
- “Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices” | Science
- “The importance of mixed selectivity in complex cognitive tasks” | Nature
- “Gamma and beta bursts during working memory readout suggest roles in its volitional control” | Nature Communications
Explore more from The Transmitter
Genetic profiles separate early, late autism diagnoses
Age at diagnosis reflects underlying differences in common genetic variants and developmental trajectories among people with autism.
Genetic profiles separate early, late autism diagnoses
Age at diagnosis reflects underlying differences in common genetic variants and developmental trajectories among people with autism.
To persist, memories surf molecular waves from thalamus to cortex
During the later stages of learning, the mouse brain progressively activates transcriptional regulators that drive memory consolidation.
To persist, memories surf molecular waves from thalamus to cortex
During the later stages of learning, the mouse brain progressively activates transcriptional regulators that drive memory consolidation.
Sex hormone boosts female rats’ sensitivity to unexpected rewards
During the high-estradiol stages of their estrus cycle, female rats learn faster than they do during other stages—and than male rats overall—thanks to a boost in their dopaminergic response to reward, a new study suggests.
Sex hormone boosts female rats’ sensitivity to unexpected rewards
During the high-estradiol stages of their estrus cycle, female rats learn faster than they do during other stages—and than male rats overall—thanks to a boost in their dopaminergic response to reward, a new study suggests.